GMM estimation of a maximum entropy distribution with interval data
نویسندگان
چکیده
We develop a generalized method of moments (GMM) estimator for the distribution of a variable where summary statistics are available only for intervals of the random variable. Without individual data, one cannot calculate the weighting matrix for the GMM estimator. Instead, we propose a simulated weighting matrix based on a first-step consistent estimate. When the functional form of the underlying distribution is unknown, we estimate it using a simple yet flexible maximum entropy density. Our Monte Carlo simulations show that the proposed maximum entropy density is able to approximate various distributions extremely well. The two-step GMM estimator with a simulated weighting matrix improves the efficiency of the one-step GMM considerably. We use this method to estimate the U.S. income distribution and compare these results with those based on the underlying raw income data. r 2006 Elsevier B.V. All rights reserved.
منابع مشابه
GMM Estimation of a Maximum Distribution With Interval Data
We develop a GMM estimator for the distribution of a variable where summary statistics are available only for intervals of the random variable. Without individual data, once cannot calculate the weighting matrix for the GMM estimator. Instead, we propose a simulated weighting matrix based on a first-step consistent estimate. When the functional form of the underlying distribution is unknown, we...
متن کاملPoint and Interval Estimation for the Burr Type III Distribution
In this paper, we study the estimation problems for the Burr type III distribution based on a complete sample. The maximum likelihood method is used to derive the point estimators of the parameter. An exact confidence interval and an exact joint confidence region for the parameters are constructed. Two numerical examples with real data set and simulated data, are presented to illustrate the met...
متن کاملE-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کامل